

TDI340 S0 pulse counter with MODBUS RTU interface

Version 1.7/June 2023

USER MANUAL

www.teracomsystems.com

1. Short description

TDI340 is a S0 pulse counter with the MODBUS RTU interface. It has 4 isolated digital inputs, complying with the S0 standard 62053-31. The S0 pulse counter works in polling or edge modes. In edge mode, it can be set up to count on rising, falling, and both edges.

The device is dedicated to the S0 pulse counter but it also provides simultaneous readings for the state of the digital inputs - OPEN/CLOSE. Independent delays for Low-To-High and High-To-Low transitions can be applied. The delays are from 0 to 656 seconds in a 10mS step and work if the counter for the corresponding digital input is in polling mode.

2. Features

- RS-485 interface carrying up to 63 nods;
- Non-volatile memory for the counters;
- LED indicator for the status of communication;
- Isolated digital inputs;

3. Applications

- Remote monitoring of measurement device with an S0 output;
- Remote data acquisition;

4. Specifications

- Physical characteristics
 Dimensions: 35x86x59mm (2 module enclosure)
 Weight: 60g
 Mounting: On 35 mm DIN top-hat rail
- Environmental limits
 Operating temperature range: -20 to 60°C
 Operating relative humidity range: 10 to 90% (non-condensing)
 Storage temperature range: -25 to 65°C
 Storage relative humidity range: 5 to 95% (non-condensing)
 Ingress protection: IP40 (connections IP20)
- Power supply Operating voltage range (including -15/+20% according to IEC 62368-1): 5 to 30VDC Current consumption: 50mA@5V
- Digital inputs

Isolation: Functional, 1kV DC Independent modes: OPEN/CLOSED ("Dry contact") and COUNTER (S0 compatible) Maximum count value: 2³² - 1 Maximum input voltage: +5.5VDC Maximum source impedance for "0" reading: 8000hm Minimum source impedance for "1" reading: 1MOhm Current max. (With 0-ohm source impedance): 3mA Maximum frequency for edge counter mode: 100Hz Polling period: 10ms L-H/H-L transition delay interval: 0 to 65535 x (polling period); not available for edge counter mode Interface Protocol: Modbus RTU Physical layer: RS-485 serial line Number of bus transceivers: up to 63 Bus cable: Twisted, shielded, 2×0.5mm²

- Response time ≤ 50ms
 - Master response time-out ≥ Response time + Answer time The answer time depends on the number of bits and the baud rate.

- 32-bit counters;
- Built-in 120ohms termination resistor;
- DIN rail mounting;
- Firmware update via the interface.
- Industrial process control.
- Process monitoring.
- Energy management.

Connectors

Type: 3.81mm pitch screwless pluggable for 28 to 16 (AWG) / 0.081 to 1.31 (mm²) wires

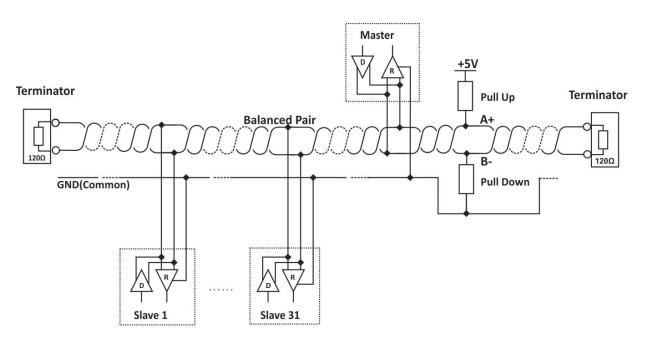
• Warranty Warranty period: 3 years

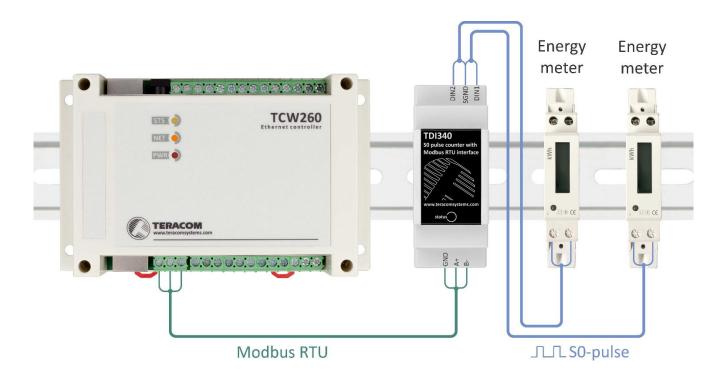
5. Status indicator

The status of the device is shown by a single LED, located behind the semitransparent front panel:

- If the LED blinks for a period of 1 second, the sensor works properly;
- If the LED blinks for a period of 3 seconds, there isn't communication with the controller;
- If the LED doesn't blink, there isn't a power supply.

6. Pinout


- 5-pins connector
 - 1 +VDD (5 to 30)
 - 2 GND
 - 3 RS485+ (A+)
 - 4 RS485- (B-)
 - 5 Terminator
- 6-pins connector
 - 1 Digital input 1 (S01+)
 - 2 SGND
 - 3 Digital input 2 (S02+)
 - 4 Digital input 3 (S03+)
 - 5 SGND
 - 6 Digital input 4 (S04+)


7. Installation

Two-Wire MODBUS definition according to modbus.org:

"A MODBUS solution over a serial line should implement a "Two-Wire" electrical interface in accordance with EIA/TIA-485 standard. On such a "Two-Wire" topology, at any time one driver only has the right for transmitting. In fact, a third conductor must also interconnect all the devices of the bus - the common."

A daisy-chain (linear) topology and UTP/FTP cables for multiple sensors are strongly recommended. For proper operation of the interface, terminators (120 ohms resistors) must be installed at both ends of the bus. The device has a built-in 120 ohm resistor and to terminate the line, "Line-B-"and "Term" must be shortened.

8. Factory default settings

Disconnect the power supply.

Press and hold the "Setup" button. Connect the power supply not releasing the button. The status LED will be ON for 3 seconds and after this will flash for 7 seconds. After that, the LED will be ON again. Release the button. The device will restart with factory default settings.

9. Firmware update

The firmware of the device can be updated by Teracom controller with MODBUS RTU supports or MBRTU-Update software.

To put the sensor in update mode, do the following:

Disconnect the sensor from the bus. Disconnect the power supply.

Press and hold the "Setup" button. Connect the power supply not releasing the button.

The status LED will be ON for 3 seconds. If in these 3 seconds, the button is released and pressed 3 times the device goes into update mode.

In the update mode status LED will be ON permanently.

Important: The sensor can be updated only if it is alone on the bus.

10. Modbus address table

Register name Holding registers	R/W	FC	PDU decimal address	Logical decimal address	Data size	Default	Valid values
RS-485 address	R/W	3,6,16	10	40011	uint16	1	1 to 247
							2400, 4800, 9600, 19200,
Baud rate *	R/W	3,6,16	11	40012	uint16	19200	38400, 57600
Parity, data, stop bits *	R/W	3,6,16	12	40013	uint16	1	1=E81, 2=O81, 3=N81

							1=MSWF (MSW, LSW)
Data order	R/W	3,6,16	13	40014	uint16	1	2=LSWF (LSW, MSW)
Device code	R	3	14	40015	uint16		0x00DF
FW version	R	3	15	40016	uint16		
					64 bytes		
Vendor URL	R	3	18	40019	UTF-8		teracomsystems.com
							1=Polling
Counter mode Input1	R/W	3,6,16	110	40111	uint16	2	2=Edge
							1=Rising
							2=Falling
Counter edge Input1	R/W	3,6,16	111	40112	uint16	1	3=Both
Impulses per real value Input1	R/W	3,6,16	112	40113	uint16	2000	0 to 65535
Delay Low-to-High Input1							
(x10mS)	R/W	3,6,16	113	40114	uint16	0	0 to 65535
Delay High-to-Low Input1							
(x10mS)	R/W	3,6,16	114	40115	uint16	0	0 to 65535
							1=Polling
Counter mode Input2	R/W	3,6,16	120	40121	uint16	2	2=Edge
							1=Rising
							2=Falling
Counter edge Input2	R/W	3,6,16	121	40122	uint16	1	3=Both
Impulses per real value Input2	R/W	3,6,16	122	40123	uint16	2000	0 to 65535
Delay Low-to-High Input2							
(x10mS)	R/W	3,6,16	123	40124	uint16	0	0 to 65535
Delay High-to-Low Input2							
(x10mS)	R/W	3,6,16	124	40125	uint16	0	0 to 65535
· · · · ·							1=Polling
Counter mode Input3	R/W	3,6,16	130	40131	uint16	2	2=Edge
							1=Rising
							2=Falling
Counter edge Input3	R/W	3,6,16	131	40132	uint16	1	3=Both
Impulses per real value Input3	R/W	3,6,16	132	40133	uint16	2000	0 to 65535
Delay Low-to-High Input3	,	-/-/ -	_				
(x10mS)	R/W	3,6,16	133	40134	uint16	0	0 to 65535
Delay High-to-Low Input3	,	-,-,				-	
(x10mS)	R/W	3,6,16	134	40135	uint16	0	0 to 65535
(,	0,0,20				-	1=Polling
Counter mode Input4	R/W	3,6,16	140	40141	uint16	2	2=Edge
	.,	0,0,10	1.0	10111	Gintito	-	1=Rising
							2=Falling
Counter edge Input4	R/W	3,6,16	141	40142	uint16	1	3=Both
Impulses per real value Input4	R/W	3,6,16	142	40143	uint16	2000	0 to 65535
Delay Low-to-High Input4	1., ••	3,0,10	142	40143	diffeio	2000	
(x10mS)	R/W	3,6,16	143	40144	uint16	0	0 to 65535
Delay High-to-Low Input4		5,0,10	145	40144	unitio	0	0 10 03333
(x10mS)	R/W	2616	144	40145	uint16	0	0 to 65535
(X10113)		3,6,16	144	40145	unitit	0	0 10 05555 0b000000000000000000000
	D	2	200	40201	wint1C		
All digital inputs binary	R	3	200	40201	uint16		to 0b000000000001111
Digital Input 1 history	D		201	40202	uint16		0b000000000000000000000000000000000000
Digital Input1 binary	R	3	201	40202	uint16		to 0b00000000000000000
		2	202	40202	wint 1 C		0b000000000000000000000000000000000000
Digital Input2 binary	R	3	202	40203	uint16		to 0b00000000000000000
	_	_					0b000000000000000
Digital Input3 binary	R	3	203	40204	uint16	_	to 0b000000000000000000
	_	-					0b000000000000000
Digital Input4 binary	R	3	204	40205	uint16		to 0b000000000000000000
Counter Input1 32-bit	R/W	3,6,16	210	40211	uint32		

Counter Input2 32-bit	R/W	3,6,16	212	40213	uint32	
Counter Input3 32-bit	R/W	3,6,16	212	40215	uint32	
Counter Input4 32-bit	R/W	3,6,16	214	40217	uint32	
counter input4 52-bit	11/ 11	3,0,10	210	40217	unitsz	The HIGH 16-bits are zero
Counter Input1 LOW 16-bit	R/W	3,6,16	220	40221	uint16	after writing
	1,7 • •	3,0,10	220	40221	diffe10	The HIGH 16-bits are zero
Counter Input2 LOW 16-bit	R/W	3,6,16	221	40222	uint16	after writing
	1,7 • •	3,0,10	221	40222	diffe10	The HIGH 16-bits are zero
Counter Input3 LOW 16-bit	R/W	3,6,16	222	40223	uint16	after writing
	.,	0,0,10		10220	Gintero	The HIGH 16-bits are zero
Counter Input4 LOW 16-bit	R/W	3,6,16	223	40224	uint16	after writing
	.,	0,0,10	223	10221	32-bit	Counter Input1/(Impulses
Counter Input1 real value	R	3	230	40231	float	per real value Input1)
					32-bit	Counter Input2/(Impulses
Counter Input2 real value	R	3	232	40233	float	per real value Input2)
		_	-		32-bit	Counter Input3/(Impulses
Counter Input3 real value	R	3	234	40235	float	per real value Input3)
					32-bit	Counter Input4/(Impulses
Counter Input4 real value	R	3	236	40237	float	per real value Input4)
					32-bit	
Float test value (MSW)	R	3	840	40841	float	-9.9(0xC11E6666)
					32-bit	
Float test value (LSW)	R	3	842	40843	float	-9.9(0xC11E6666)
Signed integer test value	R	3	844	40845	sint16	-999(0xFC19)
Signed integer test value (MSW)	R	3	845	40846	sint32	-99999(0xFFFE7961)
Signed integer test value (LSW)	R	3	847	40848	sint32	-99999(0xFFFE7961)
Unsigned integer test value	R	3	849	40850	uint16	999(0x03E7)
Unsigned integer test value						
(MSW)	R	3	850	40851	uint32	99999(0x0001869F)
Unsigned integer test value						
(LSW)	R	3	852	40853	uint32	99999(0x0001869F)
Discrete inputs						
Input1	R	2	1	10002	bit	0 or 1
Input2	R	2	2	10003	bit	0 or 1
Input3	R	2	3	10004	bit	0 or 1
Input4	R	2	4	10005	bit	0 or 1

The shown logic decimal addresses are calculated with offsets 10001 (discrete inputs) and 40001 (holding registers).

MSW - Most significant word first - (bits 31 ... 16), (bits 15 ... 0);

LSW - Least significant word first - (bits 15 ... 0), (bits 31 ... 16);

PDU address - Actual address bytes used in a Modbus Protocol Data unit;

A "NaN" value is returned for unavailable floating-point values (e.g. in case of error);

* The settings will take effect after restarting the device by power off, power on.

11. Recycling

Recycle all applicable material.

Do not dispose of in the regular household refuse.

