

# TSM400-4-TH Modbus humidity and temperature sensor Version 1.8 / November 2023

# **USER MANUAL**

TERACOM

www.teracomsystems.com

# 1. Short description

TSM400-4-TH is a humidity and temperature sensor that supports MODBUS RTU protocol over the RS-485 interface. A unique capacitive element is used for measuring relative humidity while the temperature is measured by a band gap sensor. Both sensors are seamlessly coupled to a 12-bit analog to digital-converter. This results in superior signal quality.

The TSM400-4-TH multi-sensor is housed in a slim plastic enclosure. The bottom part of the enclosure is suitable for installation on standard flush-mounted/cavity wall boxes ø68mm, with installation openings on 61 mm.

#### 2. Features

- LED indicator for status of communication;
- Long-term stability based on digital signal processing;
- RS-485 interface carrying up to 32 nodes;
- Changeable bitrate and other communication parameters;
- Firmware update via the interface.

### 3. Applications

- Environmental quality monitoring and assessment for offices
- Server room and data centers humidity and temperature monitoring
- Smart ventilation systems

#### 4. Specifications

- Physical characteristics
  Dimensions: 81 x 81 x 30mm
  Weight: 66g
- Environmental limits
  - Operating temperature range: -20 to 60°C

Operating relative humidity range: 10 to 90% (non-condensing) Recommended operating range is 20% to 80% RH (non-condensing) over -10 °C to 60 °C Prolonged operation beyond these ranges may result in a shift of sensor reading, with slow recovery time Long term drift typical: ±0.25%RH/year, ±0.05°C/year Higher drift might occur due to contaminant environments with vaporized solvents, adhesives, packaging materials, etc. Storage temperature range: -20 to 60°C Storage relative humidity range: 10 to 90% (non-condensing) Ingress protection: IP20

• Power requirements

Operating voltage range (including -15/+20% according to IEC 62368-1): 4.5 to 26VDC Current consumption: 10mA@5VDC

- Humidity measurements Accuracy (min): ±3.0%RH (in 20 to 80 %RH range) Accuracy (max): ±5.0%RH (in 10 to 90 %RH range) Resolution: 0.1%RH
- Temperature measurements Accuracy (min): ±0.4°C (in -10 to +60°C range) Accuracy (max): ±0.6°C (in -20 to +60°C range) Resolution: 0.1°C

• Interface

Response time ≤ 50ms

Master response time-out  $\geq$  Response time + Answer time The answer time depends on the number of bits and the baud rate

• Warranty

#### Warranty period: 3 years

\* Recommended operating range is 20% to 80% RH (non-condensing) over –10 °C to 60 °C

Prolonged operation beyond these ranges may result in a shift of sensor reading, with slow recovery time.

\*\* Higher drift values might occur due to contaminant environments with vaporized solvents, out-gassing tapes, adhesives, packaging materials, etc.

#### 5. Pinout

|        | Pin    | Description                    | UTP wires color    |
|--------|--------|--------------------------------|--------------------|
|        | 1-W    | Not used                       |                    |
|        | +5÷30V | Positive power supply          | Brown/White Tracer |
|        | GND    | Ground (negative) supply       | Brown              |
| +5÷30V | A+     | Line A+ (RS485+)               | Blue/White Tracer  |
| 1-W    | B-     | Line B- (RS485-)               | Blue               |
|        | TERM   | For termination, connect to B- |                    |

#### 6. Installation

Two-Wire MODBUS definition according to modbus.org:

"A MODBUS solution over a serial line should implement a "Two-Wire" electrical interface in accordance with EIA/TIA-485 standard. On such a "Two-Wire" topology, at any time one driver only has the right for transmitting. In fact, a third conductor must also interconnect all the devices of the bus - the common."



#### Attention:

For proper operation of the interface, terminators (120 ohms resistors) must be installed at both ends of the bus. The device has a built-in 120 ohm resistor and to terminate the line, "B-" and "TERM" must be shortened.

A daisy-chained (linear) topology for multiple sensors should be used. UTP/FTP cables are mandatory for interconnection.



# 7. Installation tips

The location and the mounting position of the sensor have a direct effect on the accuracy of the measurement. The tips below will ensure good measuring results:

- Sensor shall be installed about 1.2-1.4 m above the floor;
- To avoid solar radiation, the sensor should not be installed next to windows or directly in the sunlight;
- Sensors shall be installed in a place with sufficient air circulation.

TSM400-4-TH sensor is intended for installation on a cavity wall box with 68mm diameter and 61 mm screw spacing.



# 8. Status indicator

The status of the device is shown by a single LED, located inside the box:

- If the LED blinks for a period of 1 second, the sensor works properly;
- If the LED blinks for a period of 3 seconds, there isn't communication with the controller;
- If LED doesn't blink, there isn't a power supply.

# 9. Factory default settings

Disconnect the sensor from the bus (switch off the power supply).

Press and hold the "config" button. Don't release the button, connecting the sensor to the bus (switch on the power supply).

The "status" LED will be ON for 3 seconds and after this will flash for 7 seconds. After the 10<sup>th</sup> second the LED will be ON.

Release the button. The sensor will restart with factory default settings.

#### 10. Firmware update

The firmware of the sensor can be updated with a Teracom controller which supports MODBUS RTU or MBRTU-Update software. For more details ask your dealer.

# **11.Modbus address table**

|                                  |        |       | PDU<br>Address | Logical<br>Address | Offset    |                     |         |                     |
|----------------------------------|--------|-------|----------------|--------------------|-----------|---------------------|---------|---------------------|
| Register name                    | R/W    | FC    | (Decimal)      | (Decimal)          | (Decimal) | Data size           | Default | Valid values        |
| RS-485 address                   | R/W    | 03/06 | 10             | 40011              | 40001     | 16-bit uns. integer | 1       | 1-247               |
| Baud rate*                       | R/W    | 03/06 | 11             | 40012              | 40001     | 16-bit uns. integer | 19200   | 2400, 4800, 9600,   |
|                                  |        |       |                |                    |           |                     |         | 19200, 38400, 57600 |
| Parity, data, stop bits *        | R/W    | 03/06 | 12             | 40013              | 40001     | 16-bit uns. integer | 1       | 1=E81, 2=O81, 3=N81 |
| Data order                       | R/W    | 03/06 | 13             | 40014              | 40001     | 16-bit uns. integer | 1       | 1=MSWF (MSW, LSW)   |
|                                  |        |       |                |                    |           |                     |         | 2=LSWF (LSW, MSW)   |
| Device code                      | R      | 03    | 14             | 40015              | 40001     | 16-bit uns. integer |         | 0x00C2              |
| FW version                       | R      | 03    | 15             | 40016              | 40001     | 16-bit uns. integer |         |                     |
| Vendor URL                       | R      | 03    | 18             | 40019              | 40001     | 64 bytes UTF-8      |         | teracomsystems.com  |
| Float test value (MSWF)          | R      | 03    | 82             | 40083              | 40001     | 32-bit float        |         | -9.9(0xC11E6666)    |
| Float test value (LSWF)          | R      | 03    | 84             | 40085              | 40001     | 32-bit float        |         | -9.9(0xC11E6666)    |
| Signed integer test value        | R      | 03    | 86             | 40087              | 40001     | 16-bit sig. integer |         | -999(0xFC19)        |
| Signed integer test value (MSWF) | R      | 03    | 87             | 40088              | 40001     | 32-bit sig. integer |         | -99999(0xFFFE7961)  |
| Signed integer test value        | R      | 03    | 89             | 40090              | 40001     | 32-bit sig. integer |         | -99999(0xFFFE7961)  |
| (LSWF)                           | D      | 02    | 01             | 40092              | 40001     | 16 hit uns integer  |         |                     |
|                                  | n<br>D | 03    | 91             | 40092              | 40001     | 22 hit uns integer  |         | 999(0X05E7)         |
| (MSWF)                           | к      | 03    | 92             | 40093              | 40001     | 32-bit uns. integer |         | 99999(0x0001869F)   |
| Unsigned integer test value      | R      | 03    | 94             | 40095              | 40001     | 32-bit uns. integer |         | 99999(0x0001869F)   |
| (LSWF)                           |        |       |                |                    |           |                     |         |                     |
| Temperature °C                   | R      | 03    | 100            | 40101              | 40001     | 32-bit float        |         |                     |
| Humidity %RH                     | R      | 03    | 102            | 40103              | 40001     | 32-bit float        |         |                     |
| Dew point °C                     | R      | 03    | 104            | 40105              | 40001     | 32-bit float        |         |                     |
| Temperature °F                   | R      | 03    | 400            | 40401              | 40001     | 32-bit float        |         |                     |
| Humidity %RH                     | R      | 03    | 402            | 40403              | 40001     | 32-bit float        |         |                     |
| Dew point °F                     | R      | 03    | 404            | 40405              | 40001     | 32-bit float        |         |                     |
| Temperature °C x 100             | R      | 03    | 600            | 40601              | 40001     | 16-bit sig. integer |         |                     |
| Humidity %RH x 100               | R      | 03    | 601            | 40602              | 40001     | 16-bit uns. integer |         |                     |
| Dew point °C x 100               | R      | 03    | 602            | 40603              | 40001     | 16-bit sig. integer |         |                     |
| Temperature °F x 100             | R      | 03    | 1000           | 41001              | 40001     | 16-bit sig. integer |         |                     |
| Humidity %RH x 100               | R      | 03    | 1001           | 41002              | 40001     | 16-bit uns. integer |         |                     |
| Dew point °F x 100               | R      | 03    | 1002           | 41003              | 40001     | 16-bit sig. integer |         |                     |
| Temperature multiplier **        | R/W    | 03/16 | 2101           | 42102              | 40001     | 32-bit float        | 1.000   |                     |
| Temperature offset °C **         | R/W    | 03/16 | 2103           | 42104              | 40001     | 32-bit float        | 0.000   |                     |
| Temperature offset °F **         | R      | 03    | 2105           | 42106              | 40001     | 32-bit float        | 0.000   |                     |
| Humidity multiplier **           | R/W    | 03/16 | 2111           | 42112              | 40001     | 32-bit float        | 1.000   |                     |
| Humidity offset **               | R/W    | 03/16 | 2113           | 42114              | 40001     | 32-bit float        | 0.000   |                     |
| Humidity offset **               | R/W    | 03/16 | 2113           | 42114              | 40001     | 32-bit float        | 0.000   |                     |

The shown logic decimal addresses are calculated with offsets 40001 (holding registers).

MSWF - Most significant word first - (bits 31 ... 16), (bits 15 ... 0); LSWF - Least significant word first - (bits 15 ... 0), (bits 31 ... 16); PDU address - Actual address bytes used in a Modbus Protocol Data unit

When a floating-point value is not available, the returned value is "NaN" (e.g. in case of measurement error).

When a 16-bit signed integer value is not available, the returned value is "-32768" (e.g. in case of measurement error).

\* The settings will take effect after restarting the device by power-off, power-on.

\*\* Measured sensor values can be corrected by employing a multiplier and an offset.

The corrections are the results of the following calculations:

Corrected Temperature (°C) = Measured Temperature (°C) × Temperature Multiplier + Temperature Offset (°C) Corrected Humidity = Measured Humidity × Humidity Multiplier + Humidity Offset Using a multiplier and an offset allows precise adjustments to the sensor readings, ensuring accurate temperature and humidity values. It's crucial to emphasize that the multiplier and offset are applicable exclusively in degrees Celsius. After obtaining the corrected temperature in Celsius, it can then be converted to Fahrenheit.

# 12.Recycling





Recycle all applicable material.

Do not dispose of with regular household refuse.